UMEM Educational Pearls

Category: Airway Management

Title: Decompression of Traumatic Tension Pneumothorax

Keywords: trauma, PTX, finger thoracostomy, needle decompression, 2nd intercostal space, 5th intercostal space, pneumothorax (PubMed Search)

Posted: 9/25/2022 by Robert Flint, MD (Updated: 9/27/2022)
Click here to contact Robert Flint, MD

Finger thoracostomy is superior to needle decompression in the fifth mid-axiallary intercostal space which is superior to the traditionally taught needle decompression in the second mid-clavicular intercostal space for traumatic tension pneumothorax/trauamtic arrest.

Show References


Pes Anserinus pain syndrome (formerly pes anserine Bursitis)

Occurs at the bursa of the pes anserinus which overlies the attachment of the 1) Sartorius 2) gracilis and 3) semi-tendinosis tendons. Insertions resemble a Goose’s foot.

An inflammatory condition of the medial knee

Location is 2-3 inches below the knee joint on the medial side

1st layer of medial compartment

https://sportsclinicnq.com.au/wp-content/uploads/2019/01/Screen-Shot-2019-01-30-at-8.55.48-am-300x291.png

 

https://www.dramynrajani.com/wp-content/uploads/2018/05/pes-anserine-bursitis-clinical-test.jpg

 

Patients complain of knee pain just below medial joint line (esp with stairs)

History may include sudden increase in running distance especially with hills (common)

Associated with obesity, tight hamstring muscles and with knee OA

PE:  Tenderness to palpation of the bursa possibly with mild swelling

DDx: MCL tear, medial meniscus injury, medial (knee) compartment arthritis, tibial stress fracture

 

Treatment: Cessation/modification of offending activities, Icing and ice massage, NSAIDs, hamstring stretching and physical therapy. Failure of the above should prompt referral for bursal steroid injection.

 

 


Category: Critical Care

Title: 30 ml/kg in sepsis: more is not better

Keywords: 30 ml/kg, sepsis, fluid overload, ESRD, CHF (PubMed Search)

Posted: 9/20/2022 by Quincy Tran, MD (Updated: 9/27/2022)
Click here to contact Quincy Tran, MD

Have you ever encountered an ESRD patient who missed dialysis because the patient "felt too sick to go to dialysis"? The patient then had hypotension from an infected catheter line? Do we give 30 ml/kg of balanced fluid now?

__________________________

 

Title: Outcomes of CMS-mandated ?uid administration among ?uid-overloaded patients with sepsis: A systematic review and meta-analysis.

 

Settings: This is a meta-analysis

Patients: Septic patients who have underlying fluid overload conditions (CHF or ESRD).

Intervention: intravenous fluid administration according to the mandate by the Center for Medicare/Medicaid as 30 ml per kilograms of bodyweight.

Comparison: fluid administration at less than 30 ml/kg of body weight.

Outcome: 30-day mortality, rates of vasopressor requirement, rates of invasive mechanical ventilation

Study Results:

  • Random-effects meta-analysis of 5 studies, including 5804 patients.  There were 5260 (91%) patients receiving non-aggressive IVF at < 30 ml/kg versus 544 (9%) patients received aggressive IVF at rates > 30 ml/kg.
  • Patients who received aggressive IVF > 30 ml/kg were associated with 30-day all-cause mortality OR 1.42 (95% CI 0.88-2.3, P = 0.15, I2 =35%).
  • The need for vasopressor during stay was similar: OR 0.69 (95%CI 0.42-1.15, P=0.21, I2 = 33%)
  • The need for invasive mechanical ventilation during hospitalization was similar: OR 0.85 (95% CI 0.57-1.26, P = 0.42, I2 = 0)
  • Both groups had similar ICU length of stay: Standard Difference in Means -0.002 (Very small magnitude), 95% CI -0.35 to 0.34, P= 0.99, I2 = 53)
  • Similar hospital length of stay: Standard Difference in means -0.11 (small magnitude), 95% CI -0.62 to 0.38), P= 0.67, I2=77%

 

Discussion:

  • All studies were retrospective studies, as it’s hard to do RCT when the treatment is required by guidelines.  Although the studies were graded as high quality but there was still risk of bias.
  • Until there is significant evidence to change the guidelines, please document thoroughly in your charts if you do not give sepsis patients who have fluid overload the required volume of IVF at 30 ml/kg.
  • Consider early vasopressor.

Conclusion:

  • Patients who have fluid overload and sepsis had similar outcomes when they were given IVF at rates < 30 ml/kg, compared to those given IVF > 30 ml/kg as required by CMS.

Show References


Category: Trauma

Title: Managing the Airway in Trauma Patients

Keywords: Trauma, Airway Management, Resuscitation (PubMed Search)

Posted: 9/18/2022 by Robert Flint, MD
Click here to contact Robert Flint, MD

Takeaways

Manageing the airway of a trauma patient presents difficulties because of both anatomic and physiologic derangement. 

The Bottom Line: Trauma patients requiring intubation are a challenge and should be managed by the most expereinced person in the room. No study shows superiority of direct vs.video laryngoscopy. Use the technique you are most facile with and develop more techniques through courses, mentoring, and expanding your repertoire in less ill patients first. Use induction agents with lower liklelihood of causing hypotension like Etomidate and ketamine (avoid propofol and benzodiazepenes). Avoid hypoxia, hypotension and hypocarbia by resucitating as much as possible prior to intubation (use blood products and pressors where appropriate). Have a plan, a back up plan, and know when to switch to a surgical airway approach. This ia a low frequency, high risk proceedure. Mentally visualize yourself doing this proceedure regualrly to create a comfort level when it is actually needed. 

PEARLS:

1. Blood/Emesis  A. Use a double suction set up with one suction placed into the airway near the esophagus and then moved to the left of the mouth with the second used by the intubator to clear their view. 

B. If you can't visualize becaue of vomit/emesis it is very likely BVM and super glotic airways are not going to be possible and you will need to move to a surgical (front of neck) airway.

2. Limited Jaw Opening  Cervical collars can impede jaw opening. Loosen/open the collar to allow more jaw opening. Studies show that there is limited movement of C-Spine when the intubator uses caution not to flex the neck during intubation meaning the collar does not have to be in place. No study shows diret or video laryngoscopy to be superior. 

3. Blunt or penetrating neck injury Highest level of difficulty. Should be most expereienced intubator. Can use an awake intubation technique if you are adept at this method. Go with the airway approach that gives YOU the best first pass success chance. Another situation where BVM or suprglotic airway device may not work and requires surgical airway. May require low tracheostomy approach. 

4. Hypoxia  Avoiding hypoxia is a must especially in traumatic brain injured patients. Pre-oxygenate and use the airway technique that is going to give you the best first past chance of success.

5. Hypotension:  A. Resuscitate with blood products as much as possible before intubation. B. Use induction agents that are the most hemodynamically neutral such as Etomidate or Ketamine (safe in head injury patients!)

6.. Hypocarbia: Congrats on getting the tube! Now slow down your bagging. Hypocarbia leads to increased injury in traumatic brain injured patients. 

Show More In-Depth Information

Show References


Laryngospasm is defined as the cessation of ventilation despite persistent respiratory effort related to glottic closure.  Complications include hypoxia, bradycardia, and cardiac arrest.  In OR cases, one recent study found the laryngospasm to occur in 0.45/1000 cases.  In these children undergoing general anesthesia, risk factors included current upper respiratory infection, active asthma, airway anomalies, airway procedures, age < 3 months and the use of an LMA.  
Studies of the rates of laryngospasm in pediatric sedation have shown varied incidence, with prevalence between 0.43/1000 to 2.1/1000.  A metaanalysis showed that laryngospasm was more common with a combination of propofol and ketamine.
This study looked at moderate sedation cases where laryngospasm was not relieved with chin repositioning or the use of an airway adjunct.  Over a 7 year study period, 276,832 sedations were examined with 913 patients experiencing laryngospasm (3.3/1000 cases).  About 5% of these patients required intubation.  There were 2 cases of cardiac arrest, one with an underlying cardiac condition and one with a URI who was undergoing an echo.  Both of these patients had multiple agents used for sedation.
The isolated use of IV ketamine had a laryngospasm rate of 1.4/1000 cases.  The highest prevalence occured with propofol + ketamine (6.6/1000), propofol + midazolam + opiate (6.1/1000) and propofol + dexmedetomidine (5.8/1000).
The risk of laryngospasm was associated with a higher ASA status, younger age, presence of a URI, airway procedures, and certain propofol combination regimens.
Bottom line: While the prevalence of laryngospasm remains low during pediatric sedation, risk factors should be taken into consideration and the risk/benefits should be discussed in detail with the families.  Always be prepared for an airway emergency during sedation.

Show References


Point-of-care ultrasound compression of the carotid artery for pulse determination in cardiopulmonary resuscitation

Background:

-shorter (and accurate) pulse/rhythm checks are better
-manual pulse checks are often not reliable and frequently exceed the recommended 10s window
-cardiac POCUS has been used as a possible adjunct but there have been concerns about interruptions in compressions 
 
Study:
-Single center, prospective, 25 patients with OHCA (155 pulse checks total)
-some exclusions: early cessation of CPR (49), "manpower shortage" (35)
-two physicians concurrently performing manual palpation (MP) of femoral artery and POCUS-carotid artery compression (POCUS-CAC) during pulse checks
-each with stopwatch to measure time to pulse judgment
-prev training with hour lecture and hands-on demonstration on how to assess/interpret the compressibility and pulsatility of the carotid artery
 
POCUS-CAC: 
-linear probe placed transversely across patient’s middle neck to identify the carotid artery and internal jugular vein on the screen
-probe pressure was applied until the internal jugular vein was completely compressed
-absent pulse = lack of pulsation and complete compression of the carotid artery under probe pressure
-present pulse = any visual pulsation or incomplete compression of the carotid artery
 
Results:
-the average time for carotid pulse identification per patient significantly different
      -POCUS-CAC was 1.62 (1.14– 2.14) s 
      -MP 3.50 (2.99–4.99) s
-in all 155 pulse checks, the time to complete a pulse check with POCUS-CAC never exceeded 10 s, whereas five cases with MP exceeded this.
 
Takeaways/caveats:
-larger study is needed and focus should be on rhythm checks, but if staffing allows, can consider utilizing POCUS-CAC as an adjunct for pulse checks 
-the MP time in this study is much shorter than in prev studies
-would be interesting to see if the findings would be even more exaggerated in a larger patient population (average BMI in the study was 23!)
-small sample, did not address carotid stenosis/atherosclerosis, no standardization for intensity of compression applied

 

Show References


Category: Orthopedics

Title: Walk don't run to the nearest exit

Keywords: mortality, exercise, dementia, walking (PubMed Search)

Posted: 9/10/2022 by Brian Corwell, MD (Updated: 9/27/2022)
Click here to contact Brian Corwell, MD

Exericse as preventative medicine!

A recent cohort study of over 2,000 adults (mean age approx. 45) over approximately 11 years of follow-up investigated the association of step count with mortality.

This study found that those participants taking at least 7,000 steps per day compared to those taking fewer steps had a 50%-70% lower risk of mortality. They did not find an association with step intensity.

 

Another recent study investigated the dose-response association between daily step count and intensity and the incidence of all-cause dementia.

 

Uk based study of >78,000 adults aged 40 to 79 years with approximately 7 years of follow-up. Data from wrist accelerometer and registry-based dementia diagnoses.

 

Optimal step dose was 9826 steps. Minimal dose was 3826 steps (value at which the risk reduction was 50% of the observed max).

In this study, steps performed at higher intensity (112 steps/min) resulted in stronger associations.

 

Conclusions:  A great exercise goal for middle aged and older adults is just under 10,000 steps per day to decrease risks of both overall mortality and dementia.

 

 

 

 

Show References


Category: Critical Care

Title: INTUBE Study: Propofol in the Critically Ill

Keywords: intubation, propofol, RSI, SOFA (PubMed Search)

Posted: 9/7/2022 by William Teeter, MD (Updated: 9/27/2022)
Click here to contact William Teeter, MD

Take Home:

This is essentially a secondary analysis of a previous prospective observational cohort study with high quality methods. The authors have an excellent discussion of the previous studies on this topic (which for those with an interest I highly recommend you read). They conclude that this study supports previous literature which I would think would be seemingly obvious, which is that those who are more ill to begin with have less tolerance of propofol (in a dose-independent relationship) in this and previous studies. Their use of IPTW extends the analysis on this large international population by addressing confounders in a novel way.

Their overall conclusion is that propofol is bad for the critically ill, and especially bad for those with pre-existing risk factors for intubation complications. I agree: This study suggests in even stronger terms that propofol should be used carefully and probably only in unhealthy patients when other options are unavailable.

 

Study Background and Characteristics

  • INTUBE study1 was a prospective cohort study conducted from October 1, 2018, to July 31, 2019
  • Enrolled consecutive “critically ill” patients over 8 week period at 197 clinical sites from all over the world. Critically ill was defined as those with “an underlying life-threatening condition causing cardio–respiratory failure or neurologic impairment”.
  • Outcome of “cardiovascular instability/collapse” as one or more of the following events within 30 minutes of intubation start: (1199 of 2760 enrolled patients; 43.4%)
    • systolic arterial pressure <65 mm Hg recorded at least once (collapse criteria) – 12.8%
    • cardiac arrest (collapse criteria) – 7.8%
    • systolic arterial pressure <90 mm Hg for >30 minutes – 24%
    • new requirement or increase of vasopressors – 87.8%
    • fluid bolus >15 ml/kg to maintain the target blood pressure – 13.2%
  • STROBE Compliant

 

Findings

  • CV-instability group were significantly older, high SOFA scores, and higher rates of ischemic heart disase, NYHA 3/4 heart failure, poor oxygenation (SPO2/FIO2 ration), pressors, fluid bolus/total, systolic/diastolic BP, and more commonly respiratory failure and cardiovascular instability as the reason for intubation.
  • CV-stability group was less likely to receive propofol and at lower doses and more likely receive ketamine.
  • Notably, CV-instability patients were less likely to be intubated by emergency physicians versus anesthesiology.
  • Anesthesiologists were more likely to use propofol and more emergency medicine physicians using ketamine.
  • Higher incidence of CV-instability in ischemic heart disease and heart failure, noninvasive ventilation and apneic oxygenation, and in the 30–45° head-up position.
  • ICU mortality associated with:
    • vasopressors/fluids without hypotension (OR, 1.47; 95% CI, 1.21–1.79)
    • systolic blood pressure <90 mm Hg for >30 min despite vasopressors (OR, 2.65; 95% CI, 1.87–3.75)
    • systolic blood pressure <65 mm Hg (OR, 1.89; 95% CI, 1.31–2.71)
    • cardiac arrest (OR, 8.79; 95% CI, 5.46–14.7)
  • Inverse Probability Treatment Weighting2 (IPTW) analysis found that the only treatment effect with significance associate with the entire CV-instability group was propofol usage (OR, 1.23; 95% CI, 1.02–1.49).
    • No treatment effect, including propofol use or dosage, was associated with those meeting cardiovascular collapse criteria.

 

Show References


Takeaways

Intraosseous (IO) administration uses bone marrow to deliver fluids and medications during cardiac resuscitation or other emergent situations where IV access cannot be established.

IV versus IO

  • No statistically significant difference between the pharmacokinetics!
  • Flow rates of IV cannula typically range from 20 to 200 mL/min versus IO ranging from 0.33 to >50 mL/min under pressure
    • Maximum rate of administration through IO is comparable to a 21G peripheral cannula.

Considerations When Using IO Access

  • Single line, ensure all drugs running through the IO are compatible with one another.
    • For example: plasmalyte is not compatible with most medications
  • If trying to quickly administer fluids utilize a pressure bag.
    • If medication administration (i.e. vasopressors) pump should be used
  • Contraindications to IO include:
    • Placement in fractured bone with vascular injury
    • Compartment syndrome
    • Cellulitis/burns at the site
    • Underlying bone disease
    • Soft tissue infection
    • Recent orthopedic surgery
  • Once a bone has been punctured by an IO attempt, it should not be used again for at least 48 hours. 
  • Intraosseous aspiration of blood is usable for lab tests, though accuracy has varied in studies. 

 

Show More In-Depth Information

Show References


Category: Critical Care

Title: Ultrasound Central Line Confirmation

Keywords: ultrasound, central Line, confirmation, venous, cavoatrial junction, agitated saline, pneumothorax (PubMed Search)

Posted: 8/30/2022 by Zach Rogers, MD
Click here to contact Zach Rogers, MD

Takeaways

Traditionally, internal jugular and subclavian central line placement has required chest x-ray confirmation of correct placement (venous cavoatrial junction placement) as well as demonstrating lack of complication (no pneumothorax) prior to use of that central line. However, current evidence supports similar if not superior complication identification and placement confirmation with ultrasound,(1-7) allowing for a much quicker confirmation time than traditional chest x-ray, which can be vital in critically ill patients who need immediate medication administration.

Venous placement is confirmed with prompt visualization of microbubbles in the right atrium and ventricle with a rapid flush of 5-10 ml of agitated saline via the distal central line port. Additionally, if the opacification occurs <2 seconds after injection then the catheter tip is sufficiently distal in the central venous system to not require additional verification. Additional confirmation of lung sliding in both lung apices will rule out pneumothorax.

Some authors recommend checking the contralateral internal jugular vein to ensure that the central line catheter has not traveled up the internal jugular towards the head, however this may be redundant as long as the time from agitated saline injection to right atrial visualization of microbubbles is clearly less than 2 seconds.

Bottom Line: Utilization of ultrasound for central line placement confirmation is a relatively simple, rapid, safe, and accurate means of confirmation of venous catheter placement and catheter tip location, as well as ruling out pneumothorax complications.

Show More In-Depth Information

Show References


Approximately 284,000 immigrants reside in Baltimore (10% of the total population). In April 2022, Governor Abbott of Texas began sending migrants from the US southern border to Washington, DC, with Arizona joining soon after. It is important for emergency providers to be aware of these changes and how new disparities may arise.

1. Social Determinants of Health: A meta-analysis in 2018 suggests that Health literacy is a key determinant of health in refugee and migrant populations living in in high-income countries such as America. Using patient centered language and taking time to explain diagnoses are CRITICAL in caring for immigrant populations particularly in the ED. Use of appropriate language services are also important.
 

2. Assess acute vs non-acute needs: A study done in pediatric migrant populations suggests that the severity of the reasons for visiting the ED and the hospitalization rates were not higher in the pediatric migrant population than in the general pediatric population. Some common non-urgent diagnoses include scabies, anemia, oral and dental disorders.

 

3. Create a safe environment: In a study done in 2013, up to 12% of undocumented immigrants that presented to the ED expressed fear of discovery and consequent deportation. On further assessment there was the belief that medical staff are required to report these patients to immigration. It is important to proactively address inaccurate beliefs to promote a safe trusting environment.

 

Resources in Baltimore/Maryland:

-CASA

-Esperanza Center

-International Rescue Committee

- John's Hopkins Centro Sol

- National Immigration Law Center

 

National Resources (US):

-Rural Health Information Hub

-National Resource Center for Refugees, Immigrants, and Migrants

 

Show References


Category: Orthopedics

Title: Concussion & Screen Time

Keywords: Concussion, head injury, recovery, cognitive rest (PubMed Search)

Posted: 8/27/2022 by Brian Corwell, MD
Click here to contact Brian Corwell, MD

Limited data are available to guide recommendations re screen time after concussion.

A recent ED study looked at screen time effects on concussion recovery.

Population:  125 patients aged 12 to 25 years presenting to the ED <24h after injury. Mean age 17. Approximately 51% male.

Intervention:  Patients were placed in a screen time allowed group and a screen time not allowed group for the first 48 hours. Total minutes reported after the study were 630 minutes vs 130 minutes.

Outcome:  Time to symptom resolution. Patients took daily symptom scoring tests for 10 days.

Result: Screen time allowed group had a significantly longer time to recovery (8 days) vs screen time not allowed (3.5 days).

Strength: Good attempt at quantifying effects on early screen time exposure on symptom recovery in an ED population.

Weakness:  This was a small study. Many patients (>25%) were lost to follow-up and it relies on symptom self-reporting.

 

Show References


Category: Critical Care

Title: Avoid Over-Sedation of Intubated ED Patients

Keywords: analgosedation, sedation, intubation, (PubMed Search)

Posted: 8/23/2022 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

 

Deep sedation in the ED has previously been associated with longer duration of mechanical ventilation, longer lengths of stay, and higher mortality.1 Current guidelines recommend light sedation, consistent with a goal RASS of -2 to 0, for most critically-ill patients in the ICU.2

The ED-SED3 multicenter, pragmatic, before-and-after feasibility study implemented an educational initiative (inservices, regular reminders, laminated sedation charts) to help target lighter sedation depths in newly-intubated adult patients without acute neurologic injury or need for prolonged neuromuscular blockade.

  • 415 patients (196 pre-, 219 post-intervention), majority white (50%) and black (40%)
  • Main reasons for intubation: sepsis, trauma, airway protection
  • Majority of patients on fentanyl (85%) and propofol (76%), midazolam (20%)

After educational intervention:

  • 21% fewer patients with deep sedation & 20% more patients achieving light sedation
    • 10% decrease in comatose levels of sedation (RASS -4 to -5)
  • Lower hospital mortality (20.4 vs 10%, p < 0.01)
  • Similar rates of self-extubation and paralysis awareness
  • More patients extubated in the ED, downgraded from ICU admission, and discharged from the ED

Even with the caveats of the confounding and bias that can exist in before-and-after studies, these results are consistent with prior sedation-related studies and offer more evidence to support for avoiding deep sedation in our ED patients. The study also demonstrates the importance of nurse-driven sedation in achieving sedation goals.

Bottom Line: Our initial care in the ED matters beyond initial stabilization and compliance with measures and bundles. Avoid oversedating intubated ED patients, aiming for a goal RASS of -2 to 0. 

Show References


Category: Pediatrics

Title: Secondary Transmission of SARS-CoV2 with regards to Masking in Schools

Keywords: COVID, kids, masking, school (PubMed Search)

Posted: 8/19/2022 by Jenny Guyther, MD (Updated: 9/27/2022)
Click here to contact Jenny Guyther, MD

This was a multistate, prospective, observational cohort of children and teachers attending in person schools in kindergarden through 12th grade where the school districs had the ability to perform contact tracing and determine primary vs secondary infections.  During the study period (6/21-12/21) 46 districts had universal masking policies and 6 districts had optional masking policies.  

Districts that optionally masked had 3.6x the rate of secondary transmission compared to universally masked school districts.  Optionally masked districts had 26.4 cases of secondary transmission per 100 community acquired cases compared to only 7.3 cases in universally masked districts.

Bottom line: Universial masking was associated with reduced secondary transmission of SARS-CoV2 compared with optional masking policies. 

Show References


Category: Critical Care

Title: We should give some calcium... right??? ---- Part 2

Keywords: Calcium, Cardiac Arrest, ACLS, Code Blue (PubMed Search)

Posted: 8/16/2022 by Mark Sutherland, MD
Click here to contact Mark Sutherland, MD

We previously posted on the COCA trial, which looked at empiric calcium administration in cardiac arrest.  They studied 391 adult Danish cardiac arrest patients.  The immediate and 30 day outcomes showed no benefit, and in fact strongly trended towards calcium being WORSE than placebo.  This article provides the 6 month and 1 year follow up data.  Surprise, surprise... calcium is still not looking good.  

At 6 months survival non-significantly favored the placebo group, and at 1 year it significantly favored the placebo group.  Neurologic outcome for those who survived was also no better, and perhaps slightly worse, in the calcium group. 

Importantly, the trial excluded patients with "traumatic cardiac arrest, known or suspected pregnancy, prior enrollment in the trial, adrenaline prior to possible enrollment, and clinical indication for calcium at the time of randomization."

Bottom Line:  The evidence continues to not support the routine empiric administration of calcium in cardiac arrest.  Patients in whom there is an indication to give calcium (e.g. known ESRD, suspected hyperkalemia, etc) are excluded from these trials, and should likely still receive empiric calcium, but in undifferentiated cardiac arrest you can probably skip the calcium.

Show References


Category: Orthopedics

Title: Posterior Hip Dislocation

Keywords: Dislocation, reduction, AVN (PubMed Search)

Posted: 8/13/2022 by Brian Corwell, MD
Click here to contact Brian Corwell, MD

The hip joint is a very strong and stable structure requiring great force to produce a dislocation

Most hip dislocations are posterior (80-90%)

Mechanism:  MVC generating force onto an adducted flexed hip (most commonly)

Associated injuries occur both locally (acetabular fx) and distant (knee bone and ligamentous)

                Significant associated injuries in >70%

The hip joint has a very precarious blood supply.

One of the risk factors for AVN is total dislocation time

                <6 hours - 5% incidence

                >6 hours – up to 53% incidence

Examine the sciatic nerve carefully with posterior dislocations (10% incidence)

                Motor – EHL/ankle dorsiflexion

                Sensory – sensation dorsum of foot

 

There are many reduction maneuvers including the East Baltimore Lift technique

https://www.youtube.com/watch?v=1zvelGbVn04

Demonstrated at 30 seconds in above video

Place patient supine with affected leg flexed to 90 degrees at knee and hip. 2 providers position themselves on opposite sides of the patient and each places their arm under the patient’s calf/popliteal region and their hand on the opposite providers shoulder. A 3rd person is required to stabilize the pelvis. Axial traction is generated by the providers slowly standing up. Gentle internal and external rotation can facilitate successful reduction

 


Diastolic Blood Pressure

  • The diastolic blood pressure (DBP) is determined by vascular tone and remains relativley constant throughout the arterial system.
  • A low DBP (< 50 mm Hg) suggests vasodilation and may be associated with an increased risk of myocardial ischemia and left ventricular dysfunction.
  • In a recent trial, Ospina-Tascon and colleagues described the diastolic shock index (heart rate/DBP) and found that a DSI > 2.2 was associated with higher mortality in patients with septic shock.
  • Take Home Point: pay attention to the DBP and, when low, consider initiation of vasopressors concomitant with fluid resuscitation.

Show References


 

  • TXA has been used for pediatric non-traumatic (surgical) bleeding with good evidence
  • Currently used in around 1/3 of pediatric trauma centers based on survey data
  • PED-TRAX (retrospective review of pediatric trauma admissions in a combat zone) showed an association between use of TXA and decreased mortality, with no increase in thromboembolic events
  • Dosing strategies in the literature and in practice have been variable (bolus at variable dosing versus bolus + infusion)
  • The TIC TOC trial was recently completed - a multicenter randomized pilot study looking at 2 dosing strategies of TXA versus placebo which demonstrated feasibility of a larger study and will hopefully serve as a model for further research to determine efficacy as well as ideal dosing

 

Bottom line: There is not clear evidence for efficacy, but trends are positive and the documented rates of adverse effects in this population are low. It is reasonable to give, especially in patients requiring massive transfusion or who are critically ill.

Show References


Hemodynamic instability and cardiac arrest are major complications following endotracheal intubation.  The mantra “resuscitate before you intubate” has prompted several studies of how to prevent this.

The PREPARE II trial is a multicenter ICU-based trial studying the effect of 500cc of crystalloid versus no crystalloid pre-emptively to prevent hypotension following endotracheal intubation. The study enrolled 1067 critically ill patients in United States ICUs. Some 60% of patient were intubated for respiratory failure and 20% were already on vasopressor.  The primary induction drugs we etomidate and rocuronium. Importantly, urgent intubation was an exclusion. There were no differences in multiple endpoints including hypotension, new need for vasopressors, cardiac arrest, or 28-day mortality. 

This was in some ways this in not unexpected and patients already in an ICU setting have typically received some form of fluid loading already. Being ICU based and primarily a more smoldering medical population this has limited application to more emergent and undifferentiated settings, but study underscores the need for a broad and nuanced view of what “resuscitate” means. Positive pressure may exacerbate hypovolemia, but the patient’s underlying disease, the effect of anesthetic drugs both by direct action via relief of pain, discomfort, or dyspnea may predominate if you think the patient is euvolemic.

Remember to dose anesthetics/sedatives/RSI drugs with an eye toward hemodynamics and consider starting vasopressors prior to intubation

Bottom Line:

-In a broad well-conducted ICU-based study a 500cc peri-intubation bolus doesn’t prevent hypotension

-Have a broad view of what resuscitation for intubation might entail

-Having fluid ready for intubation is helpful, hemodynamic dosing of drugs and having a plan for vasopressors might be even more helpful

-Applicability to ED environments is limited in this ICU-based trial

Show References


Category: Critical Care

Title: Awareness With Paralysis Among Critically Ill Emergency Department Patients: A Prospective Cohort Study

Keywords: Awareness, mechanical ventilation, Emergency Department, Rocuronium (PubMed Search)

Posted: 7/26/2022 by Quincy Tran, MD (Updated: 9/27/2022)
Click here to contact Quincy Tran, MD

Have you ever wonder what patients feel after being intubated in the ED?

The study " Awareness With Paralysis Among Critically Ill Emergency Department Patients: A Prospective Cohort Study" aimed at answering just that.

Settings: Emergency Departments from 3 hospitals; This was a secondary analysis of a prospective trial.

Patients:

Patients who received neuromuscular blockade in ED

Intervention: None.

Comparison: None.

Outcome: Primary outcome was Awareness while paralyzed, secondary outcome was Perceived threat, which is considered the pathway for PTSD.

Study Results:

The study evaluated 388 patients.  There were 230 (59%) patients who received rocuronium.

Patients who received rocuronium (5.5%, 12/230) were more likely to experience awareness than patients receiving other neuromuscular blockade (0.6%, 1/158).

Patients who experienced awareness during paralysis had a higher threat perception score that those who did not have awareness (15.6 [5.8] vs. 7.7 [6.0], P<0.01).

A multivariable logistic regression, after adjustment for small sample size, showed that Rocuronium in the ED was significantly associated with awareness (OR 7.2 [1.39-37.58], P = 0.02). 

Discussion:

With the increasing use of rocuronium for rapid sequence intubation in the ED, clinicians should start to pay more attention to the prevalence of awareness during paralysis.  According to the study, patients reported pain from procedures, being restrained, and worst of all feelings of impending death.

One of the risk factors for awareness during paralysis would be the long half-life of rocuronium, compared to that of succinylcholine.  Therefore, clinicians should consider prompt and appropriate dosage of sedatives for post-intubation sedation.  Previous studies showed that a mean time from intubation till sedatives was 27 minutes (2), and propofol was started at a low dose of 30 mcg/kg/min for ED intubation (3). 

 

Conclusion:

Approximately 5.5% of all patients or 4% of survivors of patients who had invasive mechanical ventilation in the ED experienced awareness during paralysis.  They also were at high risk for PTSD.

Show References