UMEM Educational Pearls - Toxicology

Title: Capsaicin for cannabinoid hypermesis syndrome?

Category: Toxicology

Keywords: capsaicin, cannabinoid hyperemesis syndrome, marijuna use. (PubMed Search)

Posted: 9/19/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Cannabinoid hyperemesis syndrome [CHS] (i.e. cyclic/recurrent nausea, vomiting and abdominal pain) is associated with long-term and frequent use of marijuana. Patients with CHS often report temporary relief of symptoms with hot water/shower exposure. Emergency room providers may encounter a growing number of patients with CHS with increasing legalization of marijuana-containing products.

Topical capsaicin has been gaining interest as a potential adjunct to the conventional management of patients with CHS (e.g. antiemetics, opioids, benzodiazepines and antipsychotics).

A small retrospective study was performed involving 43 patients who had multiple visits, and were treated with and without capsaicin. The primary outcome was the ED length of stay (LOS).

Results

  • Most frequently administered medications in both groups were:
  1. Anti-emetics
  2. Haloperidol
  3. Diphenhydramine 
  • Median ED LOS: no significant difference
    • Capsaicin vs. non-capsaicin: 179 min (IQR: 147, 270) vs. 201 min (IQR: 168, 310) (p=0.33)
  • Capsaicin group showed
    • Decreased opioid used: 69 mg vs. 166.5 mg oral morphine equivalents
    • Fewer additional medication administration: 3 vs. 4 doses (p=0.015)
    • Shorter median time to discharge after last medication administration: 60 min (IQR: 35, 115) vs. 92 min (IQR: 47, 155) (p=NS) 
  • 67% of the visit where capsaicin was used required no additional medication.

 

Conclusion

  • Capsaicin use did not decrease ED LOS.
  • However, there was a decrease in total medications administered and opioid requirement.

Show References



Title: Officer, I'm not drunk. I just used a mouth wash!

Category: Toxicology

Keywords: ethanol, breath analyzer, mouth wash (PubMed Search)

Posted: 9/12/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Breath analyzers are commonly used by law enforcment officers to test for alcohol intoxication. Breath analyzer uses ethanol partition ratio between blood:breath of 1:2100 = 1 gm of ethanol in 2100 mL of breath/air.

Mouth wash products are frequently used for oral hygiene, and at times, to "mask" odor of substances. These products are readily available in any grocery stores or pharmacy and contain upto 26.9% ethanol (e.g. Listerine) (18.9% - Scope; 14.0% - Cepacol).  

Recently, a small study using healthy volunteers (n=11) was published to investigate the impact of limited ethanol exposure (mouth wash and ethanol vapor) on the breath-alcohol concentration (BrAC).

 

Method

  1. Ethanol vapor exposure (856 mg/m3) for 15 minute. 
  2. Oral rinse (for 30 sec) using mouth wash containing 22% ethanol, 1 hour after the ethanol vapor exposure
  3. Blood and breath samples were collected before, between and after exposure.

 

Results

Blood: No or very low levels of ethanol (0.002 mg/g) were detected in blood at all collection time for both exposures.

BrAC - first collection -- seconds after exposure

  • Ethanol vapor: 0.14 mg/L (0.014 mg/dL)
  • Mouth wash: 4.4 mg/L (0.44 mg/dL)

 

Mean time to negative BrAC level (Swedish statutory limit of 0.1 mg/L = 0.01 mg/dL in air) (FYI: US limit = 80 mg/dL)

  • Ethanol vapor: 0.5 min (0.06 - 0.7 min)
  • Mouth wash: 11 min (6 - 15 min) 

 

Conclusion

  • Ethanol vapor did not affect the BrAC
  • Mouth wash use can transiently increase BrAC; however, their use does not sufficiently increase the BrAC to result in "false positive" based upon US limit.

Show References



 

Numerous different household products can potentially be misused/abused. One such product is whipped cream charger/propellant that contains nitrous oxide.

Acute toxicity produce dose dependent response

  • Euphoria 
  • Anxiolysis
  • Sedation
  • Unconsciousness
  • Asphyxiation

Chronic toxicity causes myeloneuropathy (demyelination of the dorsal and lateral columns of the spinal cord) due to vitamin B12 deficiency

  • Extremity paresthesias
  • Ataxia
  • Peripheral sensory neuropathy (loss of vibration sense and proprioception)
  • Weakness 
  • Hematologic effects: leukopenia, thrombocytopenia, megaloblastic anemia

Management

  • Cessation of nitrous oxide use
  • Vitamin B12 (cyanocobalamin) repletion (IM)

Show References



Title: CDC alert: Vaping associated pulmonary injury

Category: Toxicology

Keywords: vaping, THC, e-cigarette, pulmonary injury (PubMed Search)

Posted: 8/22/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Center for Disease Control and Prevention (CDC) recently issued alerts regarding cases of pulmonary illnesses that may be linked to "vaping" (in 15 states with 149 possible cases). These cases are still under investigation but all cases reported vaping weeks/months prior to hospitalization.

 

Most cases involve young adults who have been using THC-containing products

Common complaints included

  • Gradual onset of shortness of breath, cough, and chest pain
  • GI symptoms: nausea, vomiting and diarrhea
  • Fever, fatigue

 

Imaging studies:

  • Chest x-ray can show bilateral opacity
  • CT lung demonstrates ground-glass opacities with sub-pleural sparing.

 

Clinical course

  • Some cases required mechanical intubation
  • Corticosteroid treatment appears to improve clinical course
  • Infectious evaluation was negative in almost all cases.
  • No clear causative etiology has been identified
  • No death has been reported 

 

What to do:

  • Inquire about vaping history when treating patients with suspected cases.
  • Providers should contact their local health department, poison center or CDC (VapingAssocIllness@cdc.gov) to report possible case of vaping associated pulmonary injury 

Show References



Title: drug-induced liver injury and its implicated agents

Category: Toxicology

Keywords: drug-induced liver injury (PubMed Search)

Posted: 8/16/2019 by Hong Kim, MD (Updated: 12/5/2025)
Click here to contact Hong Kim, MD

 

Direct hepatotoxicity from a drug is predictable and dose-dependent.

Most commonly implicated agents include:

  • Acetaminophen
  • Niacin
  • Aspirin
  • Cocaine
  • IV Amiodarone
  • IV methotrexate
  • Cancer chemotherapy

On the contrary, idiosyncratic prescription drug-induce liver injury is rare, unpredictable and not related to dose.

Most commonly implicated agents are:

  1. Amoxicillin-clavulanate
  2. Isoniazid
  3. Nitrofurantoin
  4. TMP-SMZ
  5. Miocycline
  6. Cefazolin
  7. Azithromycin

Bottom line:

  • Drug-induced liver injury is uncommon and can be a diagnostic challenge.
  • Recognition of commonly implicated agents can help recognize/identify drug-induced liver injury. 


Title: How common is hematologic toxicity from copperhead bite?

Category: Toxicology

Keywords: hematologic toxicity, copperhead envenomation, bleeding (PubMed Search)

Posted: 8/1/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Hematologic toxicity (coagulopathy/bleeding) can occur with pit viper envenomation. Copperhead is the most commonly implicated pit viper envenomation in the U.S. However, the prevalence of hematologic toxicity from copperhead envenomation is variable, possibly due to regional variation in venom potency and species misidentification. 

An observation study was performing using multi-center (Virginia Commonweath university, University of Virginia Medical Center and Eastern Virginia Medical medical center) electronic hospital/medical records (Jan 1, 2006 to Dec 31, 2016) of suspected copperhead bites. Authors state that copperhead snakes are "nearly exclusively endemic" to the VCU and UVA medical center region.

 

Results:

388 patients were identified but 244 met inclusion/exclusion criteria.

  • Mean age: 34 years
  • Male: 59%
  • Antivenom administration: 76%
  • No bleeding was reported.

 

Hematologic toxicity: 14%

  • Elevated PT: 10.0%
  • Elevated PTT: 3.9%
  • Thrombocytopenia: 1.2%
  • Hypofibrinogenemia: 0.7%

 

Conclusion

In a small sample of copperhead envenomation in Virginia, “subtle” hematologic abnormalities were observed but clinically significant hematologic toxicity was not observed (i.e. bleeding)

Show References



Title: Pulmonary complication from reversal of opioid overdose with naloxone

Category: Toxicology

Keywords: naloxone, pulmonary edema, aspiration, overdose (PubMed Search)

Posted: 7/19/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Pulmonary complications - aspiration, pulmonary edema, etc. are frequently reported in both heroin intoxication and in reversal of opioid overdose with naloxone. 

Suspected opioid overdose victims (N=1831) who received naloxone from EMS providers were studied retrospectively. Pulmonary complications were defined as pulmonary edema, aspiration pneumonia and aspiration pneumonitis.

Results

  • Out of hospital naloxone dose > 4.4 mg – 62% more likely of experiencing pulmonary complication (OR 2.14, 95% CI: 1.44 to 3.18) 
  • Increased risk of pulmonary complication if initial naloxone dose is > 0.4 mg (OR 2.57, 95% CI 1.45 to 4.54)

 

Conclusion

Higher out of hospital naloxone administration is associated with increased odds of developing pulmonary complications

Show References



Title: Human errors involving "push dose pressors"

Category: Toxicology

Keywords: push dose pressor, phenylephrine, epinephrine, human error (PubMed Search)

Posted: 7/11/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

“Push dose pressors” – administration of small doses of vasopressors in the emergency room has become a common practice. A recently published study investigated the incidence of human error and adverse hemodynamic events.

Push dose pressors were defined as:

  • Phenylephrine (any dose)
  • Epinephrine (<= 100 mcg) 

Adverse hemodynamic event was defined as:

  • Extreme tachycardia (HR > 140 bmp)
  • New bradycardia (HR < 60 bmp)
  • Hypertension (SBP > 180 mmHg)
  • Ventricular tachycardia

249 out of 1522 patients were identified and analyzed from Jan 2010 to November 2017

  • median initial epinephrine dose (20 mcg; IQR: 10-100; range 1-100)
    • recieved more than one dose: 78 (57%)
  • median initial phenylephrine dose (100 mcg; IQR: 100-100; range 25 to 10,000)
    • received more than one dose: 62 (56%)

Adverse event

  • Phenylephrine group (n=110): 30 (27%; 95% CI: 19-36%)
  • Epinephrine group (n=139): 68 (50%; 95% CI: 41-58%)

Errors

  • Human error: 47 (19%) - similar proportion of human error between two agents.
  • Dosing error: 7 (3%; 2.5 to 100-fold)
  • Documentation error: 43 (17%)
  • Only one dosing error occurred when a pharmacist was present

 

Conclusion

  • Human errors and adverse hemodynamic event were common when “push dose pressors” were administered.
  • Consultation with a pharmacist can/may reduce dosing error.

Show References



Title: Sudden Sniffing Death

Category: Toxicology

Keywords: Sudden sniffing death, Inhalants, Fluoridated Hydrocarbons (PubMed Search)

Posted: 6/27/2019 by Kathy Prybys, MD (Updated: 7/5/2019)
Click here to contact Kathy Prybys, MD

Volatile inhalants such as glue, lighter fluid, spray paint are abused by "sniffing" (from container), "huffing" (poured into rag), or "bagging" (poured into bag). "Dusting" is the abuse of canned air dust removal products. These inexpensive easliy accessible products are so dangerous  that manufacturers include product warnings regarding lethal consequences from misuse and even may indicate that a bitterant is added to discourage use. Common duster gases include the halogenated hydrocarbons, 1,1-difluoroethane or 1,1,1-trifluroethane which are highly lipid soluble and rapidly absorbed by alveolar membranes and distributed to CNS. Desired effect of euphoria and disinhibition rapidly occur but unwanted side effects include confusion, tremors, ataxia, pulmonary irritation, asphyxia and, rarely, coma.

"Sudden sniffing death" is seen within minutes to hours of use and is due to ventricular arrhythmias and cardiovascular collapse. Available experimental evidence postulates the following mechanisms: Inhibition of cardiac sodium, calcium, and repolarizing potassium channels hERG and I(Ks) causing reduced conduction velocity and altered refractory period leading to reentry arrythmias or myocardial "sensitiization" to catecholamines resulting in after depolarizations and enhanced automaticity. Treatment should include standard resuscitation measures but refractory arrythmias to defibrillation have been reported and use of amiodarone and beta blockers should be considered.

 

Bottom Line:

  • Volatile Inhalant Abuse is common and dangerous 
  • SSD can occur even with first use
  • Ventricular arrythmias can be refractory to electricity. Consider amiodarone and beta blockers.

 

 

Ultra Duster Aerosol with Trigger, 12 oz

Show References



Title: Cyanide antidote in the pipeline (submitted by James Leonard, PharmD)

Category: Toxicology

Keywords: cyanide toxicity, sodium tetrathionate, (PubMed Search)

Posted: 6/27/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Cyanide poisoning, while uncommon, is frequently fatal. Current antidotes include methemoglobinemia inducers (nitrites), sulfur donators (thiosulfate), and hydroxocobalamin. Each has risks and benefits that must be considered. Three new potential antidotes, including sodium tetrathionate, have recently been evaluated in swine models.

 
Intramuscular sodium tetrathionate1

  • Sodium tetrathionate can bind and eliminate two cyanide molecules compared to one cyanide molecule by thiosulfate.
  • Studied in a large (50 kg) female swine model of cyanide poisoning.
  • All pigs were given cyanide via IV until 6 minutes post-onset of apnea, then given an approximately 1.5 mL IM injection of sodium tetrathionate (18 mg/kg).
  • Survival at 90 minutes was 100% (6/6) in the treated group and 16% in the control arm (1/6). 

Advantages:

  • Small volume injection (~1.5-2 mL in humans)
  • No interference with routine laboratory tests.
  • Ease of administration in pre-hospital or potential mass casulty setting.

Bottom line:

  • New cyanide antidotes are being developed.
  • The FDA does NOT require human trials of efficacy for cyanide antidotes.
  • It is unclear where these drugs are in the approval process at this time, but look for them in the future.

Show References



Title: Intranasal administration of naloxone for suspected opioid overdose

Category: Toxicology

Keywords: intranasal naloxone, opioid overdose, reversal (PubMed Search)

Posted: 6/19/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Naloxone distribution programs have been expanding to promote the naloxone adminstration by laypersons, usually intranasal (IN) device, to victims of opioid overdose. A recent study analyzed the reports of prehospital naloxone administration reported to a regional poison center.

  • 1139 cases of prehospital naloxone administrations were identified between 2015 and 2017.
  • 98.2% had ventilatory depression
  • 97% were unresponsive
  • Law enforcement officers administered 91% of the naloxone, 97.9% via IN route

 

Opioid toxicity revesal:

  • Opioid-induced ventilatory or CNS depression was reversed in 79.2% after administering a mean naloxone dose of 3.12 mg. 
  • EMS administered additional naloxone (mean dose: 2.2 mg) to 291 due to lack of or partial reversal of opioid toxicity. 
  • 254 out of 291 (92.4%) regained normal/improved mental and ventilatory status.  
  • 95.9% of the overdose victims survived.

 

However, between 2015 and 2017, the reversal rate decreased (82.1% to 76.4%) while mean administered naloxone dose increased (2.12 mg to 3.63 mg). The cause of this trend is unknown but the dose of commercially available IN naloxone kit increased from 2 mg to 4 mg in 2016.

 

Bottom line:

  • IN naloxone administration is an effective intervention to reverse opioid toxicity.
  • However, larger naloxone doses were administered between 2015 and 2017 while the reversal rate decreased.
  • It is essential for bystander/witness of overdose to notify EMS as overdose victims may require additional naloxone administration/medical attention.

 

Show References



Title: Prevalence of fentanyl exposure in Baltimore

Category: Toxicology

Keywords: opioid use disorder, fentanyl exposure, baltimore, (PubMed Search)

Posted: 6/13/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Since 2013, the availability of fentanyl has been increasing in the illicit drug supply, especially in heroin supply. Fentanyl and its analogs have been responsible for the dramatic increase in opioid overdose death over the past 5 years. 

Two recent cross-sectional studies screened ED patients with opioid use disorder for fentanyl exposure.

Study 1:

  • Of 165 patients, urine samples were obtained from 129 participants.
  • 80.6% tested positive for fentanyl from urine sample when over 95% reported preference for heroin in the fentanyl positive group.
  • 85.7% of the overdose group (n=42) was positive for fentanyl.
  • Over 84% recognized fentanyl’s high potency and high risk of death in overdose.
  • 29.7% (n=49 of 165) intentionally purchased fentanyl for use.  
  • Intentional fentanyl purchase was more common in non-overdose group(34.1% vs. 16.7%).

Study 2: 

  • 76 ED patients were screened.
  • 83% showed presence of fentanyl in urine.
  • 5% reported knowledge of using fentanyl (i.e. intentional use).

Bottom line:

  • Fentanyl exposure is common among opioid users in Baltimore
  • Up to 30% of ED patients with opioid use disorder intentionally purchase fentanyl although majority recognize the higher risk of overdose death from fentanyl compared to other opioids.

Show References



Title: Online market place for toxic substances

Category: Toxicology

Keywords: toxic substance, online retailers, amazon.com, (PubMed Search)

Posted: 6/6/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Many chemicals and substances - both legal and illegal - can be purchased from an online retailer. A recent study searched Amazon.com to see if any of the "extremely hazardaous substances" identified by Environmental Protection Agency (EPA) were available for purchase.

Amazon.com was searched over 10-month period.

Result:

  • 79 of 340 substances listed as "extremely hazardous by the EPA were available for purchse. 
  • 1/3 of the products/substances possess sufficient dose to be considered toxic in single unit purchase
  • Only 4 substances required a bussiness account to be purchase. 

 

Bottom line:

Toxic substances are readily available from many online retailers that can potentially cause serious toxicity. Online retailers should consult with experts and governmental agencies to limit the availability of such products.

Show References



Title: Drug-induced hypoglycemia

Category: Toxicology

Keywords: Hypoglycemia, Drug induced (PubMed Search)

Posted: 5/16/2019 by Kathy Prybys, MD
Click here to contact Kathy Prybys, MD

Drug-induced hypoglycemia is an important cause of hypoglycemia which should be considered in any patient presenting with altered mental status. In one study, drug-induced hypoglycemia represented 23% of all hospital admissions attributed to adverse drug events. Risk factors for developing hypoglycemia include older age, renal or hepatic insufficiency, concurrent use of insulin or sulfonylureas, infection, ethanol use, or severe comorbidities. The most commonly cited drugs associated with hypoglycemia include:

  • Quinolones
  • Sulfonylureas* either alone or with a potentiating drug 
  • Insulin
  • Pentamidine
  • Quinine
  • B-blockers
  • ACE Inhibitors
  • Tramadol**

*In Glipizide users, there was 2-3 fold higher odds of hypoglycemia with concurrent use of sulfamethoxale-trimethoprim, fluconazole, and levofloxacin compared with patients using Cephalexin.

**Tramadol potentially induces hypoglycemia by effects on hepatic gluconeogenesis and increasing insulin release and peripheral utlizilation. Was seen in elderly at initiation of therapy within first 30 days.

BOTTOM LINE:

Take care in prescribing drugs known to increase risk of hypoglycemia in elderly patients, with comorbidities, or those already taking medications associated with hypoglycemia. 

Show References



Title: pediatric guanfacine exposure

Category: Toxicology

Keywords: guanfacine, ADHD, pediatric, toxicity (PubMed Search)

Posted: 5/3/2019 by Hong Kim, MD (Updated: 12/5/2025)
Click here to contact Hong Kim, MD

 

Guanfacine is a presynaptic alpha-2 adrenergic receptor agonist (similar to clonidine) that is FDA approved to treat ADHD in pediatric patients 6 years of age and older. A recently published study characterized the pediatric exposure to guanfacine between 2000 and 2016.   

  • 10927 single exposures to guanfacine were identified.
  • Guanfacine exposure increased in all age group starting 2009
  • Highest exposure rate was in 6-12 years old population

Most frequently reported clinical effect (n=10927)

  • Drowsiness (n=4262; 39.0%)
  • Bradycardia (n=1696; 15.5%)
  • Hypotension (n=1127; 10.3%)
  • Dizziness (n=279; 2.6%)
  • Hypertension (n=199; 1.8%)

Severe clinical effects (n=10927)

  • Respiratory depression (n=47; 0.43%)
  • Coma (n=24; 0.22%)
  • Respiratory arrest (n=5; 0.05%)
  • Cardiac arrest (n=1; 0.01%)

Duration of clinical effect

  • 8 to 24 hours: > 80%

Conclusion

  • Severe toxicity (respiratory depression/arrest and cardiac arrest) is rare with unintentional guanfacine exposure.
  • If symptomatic, majority of the patients were asymptomatic within 24 hours.


Title: How harmful is liquid laundry detergent pod exposure?

Category: Toxicology

Keywords: laundry pod exposure, toxicity (PubMed Search)

Posted: 4/18/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Single use laundry pods are readily available in many homes. Due to their bright colors, they have been mistaken for edible products (e.g. candy) by children.

A recent study reviewed 4652 laundry pod exposures from United Kingdom.

95.4% involved children aged < 5 years via oral route (89.7%).

  • Asymptomatic: 1738 (37.4%)
  • Minor symptoms: 2728 (58.6%)
  • Moderate symptoms: 107 (2.3%)
  • Severe symptoms: 19 (0.4%)
  • Death: 1 

 

Common symptoms in moderate/severe symptom groups, including fatality (n=127)

  • Vomiting: 75
  • Stridor: 34
  • CNS depression: 22
  • Keratitis/corneal damage: 21
  • Coughing: 18
  • Conjunctivitis: 13
  • Hypersalivation: 12
  • Foaming from the mouth: 11
  • Hypoxemia: 11

 

Conclusion

  • The majority of the laundry pod exposure occurs via oral route and result in no or minor symptoms
  • Although rare, respiratory, GI and ocular effect can occur after laundry pod exposure.

Show References



Intravenous lipid emulsion (ILE) is use as a therapy of last resort in refractory cardiovascular shock from toxicity of select agents (e.g. calcium channel blockers, beta blockers and select Na-channel blocking agents). There are number of case reports/series that showed positive cardiovascular/hemodynamic response after ILE, which are prone to publication bias. Results from limited number of human trials  have shown mixed results.

A study reviewed fatal cases of poisoning that received ILE from the National Poison Data System to characterize the clinical response of ILE therapy.

Results

N=459 cases from 2010 to 2015.

Most common substance involved

 

N (%)

Number with ROSC (%)

Ca-channel blockers

183 (40)

8 (4.4)

Beta blockers

102 (22)

5 (4.9)

Bupropion*

53 (12)

5 (9.4)

TCAs*

48 (10)

2 (4.2)

Citalopram/escitalopram

36 (8)

0

Quetiapine

26 (6)

1 (3.8)

Flecainide

21 (5)

5 (23.8)

Local anesthetics – parenteral*

8 (2)

1 (12.5)

*Use of ILE supported by Lipid work group

Response rate

  • No response: 45%
  • Unknown response: 38%
  • Transient/minimal response: 7%
  • ROSC: 7%
  • Immediate worsening: 3%

Possible adverse reactions (n)

  • ARDS: 39
  • Lipemia: 3
  • Failure of CRRT filter: 2
  • Worsening/new seizure: 2
  • Asystole immediately after administration: 2
  • Fat embolism: 1

 

Conclusion

  • The number of failed cases of ILE therapy outnumbers the published cases of ILE success.
  • Currently, there is a lack of data that shows the efficacy of ILE therapy.

Show References



Title: "There's Something Fishy Here"

Category: Toxicology

Keywords: Scromboid, Histamine (PubMed Search)

Posted: 3/28/2019 by Kathy Prybys, MD (Updated: 3/29/2019)
Click here to contact Kathy Prybys, MD

Scromboid (histamine fish poisoning) can be easily misdiagnosed since its' clinical presentation can mimic that of allergy. Seen most frequently in the summer and occurring with Scombroideafish (tuna, mackerel, bonito, skipjack) but also with large dark meat fish (sardines and anchovies) and even more commonly with nonscromboid fish such as mahi mahi and amber jack. In warm conditions when fish is improperly refrigerated, bacterial histidine decarboxylase converts muscle histidine into histamine which quickly accumulates. Histamine is heat stable and not destroyed with cooking. 

  • Clinical features: Intense flushing of face, neck, and upper torso, urticaria, abdominal cramps, headache, palpitations, diarrhea, nausea, vomiting, burning of the mouth and throat.
  • Symptoms begin within minutes of ingestion and typically last several hours
  • Self limiting condition. Mainstay of treatment is H1 blockers (antihistamines) and good supportive care. If bronchospam present steroids and inhaled B2 agonists should be administered.

Bottom Line:

Scromboid poisoning is due to histamine ingestion and is often misdiagnosed as allergic reaction. It is preventable with proper fish storage.

Show References



Title: Kratom: is it a safe herbal alternative to opioids?

Category: Toxicology

Keywords: kratom, adverse effects, poison center data (PubMed Search)

Posted: 3/14/2019 by Hong Kim, MD
Click here to contact Hong Kim, MD

 

Kratom (Mitragyna speciosa) has been used for centuries in Southeast Asia to manage pain and opium withdrawal. It is increasingly being used in the U.S. for similar purpose. The U.S. DEA lists Kratom as a “drug of concern”.

Effects of Kratom leaves

  • 1 – 5 gm: mild stimulatory effects
  • 5 – 15 gm: opioid-like effects
  • >15 gm: sedative effects

A study reviewed National Poison Data System (2011 to 2017) to evaluate the clinical effects/outcomes of Kratom exposure.

Finding: (N=1807; single-substance: 1174; multiple-substance: 633])

  • 2/3 of all exposure occurred in 2016 – 2017 via oral route (83.0%)
  • 88.9% were adults (> 20 years old) 
  • 86.1% of the exposures occurred in private residence
  • Fatality: 11 (2 deaths occurred after an isolated exposure to Kratom)

Common symptoms

  • Agitation: 22.9%
  • Tachycardia: 21.4%
  • Drowsiness/lethargy: 14.3%
  • Nausea/vomiting: 13.2% - 14.6%
  • Confusion: 10.6%
  • Hypertension: 10.1%
  • Seizure (single/multiple): 9.6%
  • Respiratory depression: 3.6%

Disposition

  • Admitted to a health care facility: 31.8% (n=498)
    • Critical care unit: 14.0%
    • Non-critical care: 13.1%
    • Psychiatric facility: 4.7%

Bottom line:

  • Kratom use is associated with a wide spectrum of clinical signs/symptoms.
  • Death from isolated exposure to Kratom is rare. 

Show References



The primary tenet of poisoning treatment is to separate the patient from the poison. Gastric decontamination has been the cornerstone of poisoning treatment throughout history and methods include induced emesis, nasogastric suctioning, EGD or gastrostomy retrieval, activated charcoal, and whole bowel irrigation. Current guidelines for gastic decontamination are limited to few clinical situations. The detection of residual life threatening poisons in the stomach would be of value in predicting who might benefit from gastric decontamination in overdose.

Plain radiographs have variable sensitvity in detecting radioopaque pills. Computed tomography (CT) has been successful and gained wide acceptance in the detection of drug in body packers. In a recent study, authors studied the usefulness of non-contrast abdominal computed tomography for detection of residual drugs in the stomach in patients  presenting over 60 minutes from acute drug overdose:

  • 140 patients were included in this study
  • Median ingested drug amounts were 28 tablets or capsules
  • Median time until CT scan was performed after drug ingestion was 4 hours
  • Multiple types of drugs were ingested in 53.6%
  • Sustained-release drugs  were ingested in 17.1 %
  • Gastric lavage and WBI were performed on 32.9% patients
  • Drugs were detected in 25.7% in the non-contrast CT scan performed over 60 min after ingestion.
  • Total duration of hospital stay was significantly longer in the “presence of drugs” group

BOTTOM LINE:

Non-contrast CT may help to predict which patients would benefit from gastric decontamination in acute life-threatening drug poisonings.

Show References