UMEM Educational Pearls - Critical Care

 

When managing transplant patients it is important to keep in mind the anatomic and physiologic changes that occur with the complete extraction of one person's body part to replace another's. 

 

For cardiac transplant patients with symptomatic bradycardia:

  • Remember that due to lack of autonomic/vagal innervation, resting HR should be around 90 bpm.
  • HR will not respond to atropine. Use direct sympathomimetics like epinephrine instead.
  • If medication is unsuccessful, proceed to transcutaneous or transvenous pacing.

 

For cardiac transplant patients with tachyarrythmias:

  • They are particularly sensitive to adenosine; for SVT start with 1 to 3mg adenosine push (3mg is usually effective) to avoid sustained bradycardia or asystole.
  • Digoxin is not effective as an antiarrhythmic.
  • Diltiazem can decrease the metabolism of calcineurin inhibitor immunosuppressive agents (such as cyclosporine and tacrolimus), so while it can be used there may need to be dose adjustments to these medications. 

 

Show References



Hyponatremia in the Brain Injured Patient

  • Hyponatremia is the most common electrolyte disorder in neurocritical care and is associated with increased ICP.
  • The two most common causes of hyponatremia in this patient population are cerebral salt wasting syndrome and SIADH.
  • Symptomatic hyponatremia should be treated with hypertonic saline:
    • 30-45 ml of 10% NaCl or
    • 100-150 ml of 3% NaCl
  • In order to prevent osmotic demyelination syndrome (ODM), sodium should not be corrected by more than 10 mmol/L/day.
  • The risk of ODM is low when acute hyponatremia develops in less than 48 hours.

Show References



Category: Critical Care

Title: Intubation Preoxygenation with High Flow Nasal Cannula

Keywords: Airway management, acute respiratory failure, hypoxia, intubation, preoxygenation (PubMed Search)

Posted: 3/12/2019 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

 

The PROTRACH study recently compared preoxygenation with standard bag valve mask (BVM) at 15 lpm to preoxygenation + apneic oxygenation with high flow nasal cannula 60 lpm/100% FiO2 in patients undergoing rapid sequence intubation.

  • There was no significant difference in the primary outcome of median lowest SpO2 during intubation. 
  • There were more intubation complications in the BVM group compared to the HFNC group:
    • Severe complications: SpO2 <80%, severe hypotension (SBP < 80mmHg or vasopressor initiation/increase by 30%), and cardiac arrest (6% HFNC vs 16% BVM, RR 0.38, 95% CI 0.15-0.95, p=0.03). 
    • Moderate complications: aspiration, cardiac arrhythmia, agitation, and esophageal intubation (0% HFNC vs 7% BVM, p= 0.01). 
  • There was no difference in ventilator days, ICU length of stay, or mortality.

 

Show References



A True Tracheostomy Emergency

  • Patients with a tracheostomy often present to the ED for evaluation of a potential complication.
  • Consider a tracheoarterial fistula in any patient with a tracheostomy who presents with brisk bleeding.
  • Most occur within 3 to 4 weeks following tracheostomy placement, and the most common location is the innominate artery.
  • Up to 50% of patients will present with a sentinel bleed - an episode of brisk bleeding that has usually stopped at the time of presentation.
  • For patients who present with active hemorrhage, overinflate the tracheostomy cuff in an attempt to tamponade the bleeding.
  • If that does not stop the bleeding, remove the tracheostomy and compress the artery against the poterior sternum with your finger.

Show References



Category: Critical Care

Title: Ventilator Management Strategies in ARDS

Keywords: ARDS, respiratory failure, ventilator settings, critical care (PubMed Search)

Posted: 2/26/2019 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

 

Despite ongoing research and efforts to improve our care of patients with ARDS, it remains an entity with high morbidity and mortality. Early recognition of the disease process and appropriate management by emergency physicians can have profound effects on the patient's course, especially in centers where ICU boarding continues to be an issue.

 

Recognition of ARDS (Berlin criteria)

  • Acute in onset
  • Bilateral infiltrates on chest imaging not due to cardiac failure/volume overload
  • PaO2 : FiO2 < 300 despite PEEP of at least 5cmH2O 
  • This is the standard ED patient who gets intubated with multifocal pneumonia and has continued hypoxemia

*An ABG should be obtained in the ED if physicians are unable to wean down FiO2 from high settings, if oxygenation by pulse ox is marginal, or if the patient is in a shock state.

 

Tenets of ARDS Management:

  • Low tidal volume ventilation (6-8ml/kg ideal body weight*)
  • Maintain plateau pressures (Pplat) < 30 cmH2O
  • Driving pressure (Pplat – PEEP) < 15 cmH2O
  • Goal PaO2 > 55-60 
  • Permissive hypercapnia to pH >7.2

*IBW Males = 50 + 2.3 x [Height (in) - 60]   /  IBW Females = 45.5 + 2.3 x [Height (in) - 60]

 

Strategies for Refractory Hypoxemia in the ED:  You can't prone the patient, but what else can you do? 

1. Escalate PEEP in stepwise fashion

  • ex: 2cmH20 every 10 minutes
  • can use ARDSnet PEEP/FiO2 table as guide

2. Recruitment maneuvers

  • "20 of PEEP for 20 seconds" or "30 for 30"
  • if patient is "PEEP responsive," leave PEEP on a higher setting than when you started (ex: 10 instead of 5, 16 instead of 10)
  • Risk of barotrauma with higher PEEPs and hypotension in underresuscitated or hemodynamically unstable patients due to decreased venous return

3. Appropriate sedation and neuromuscular blockade

  • promotes patient synchrony with lung protective settings
  • can result in improved oxygenation by itself

4. Inhaled pulmonary vasodilators (inhaled prostaglandins, nitric oxide) if known or suspected right heart failure or pulmonary hypertension

 

Bottom Line: Emergency physicians are the first line of defense against ARDS. Early recognition of the disease process and appropriate management is important to improve outcomes AND to help ICU physicians triage which patients need to be emergently proned or even who should potentially be referred for ECMO. 

 

Show References



Does This Patient Have Pericardial Tamponade?

  • Echocardiography is critical for the identification of a pericardial effusion and rapid diagnosis of pericardial tamponade.
  • Common echocardiography findings that suggest tamponade include diastolic right ventricular collapse, systolic right atrial collapse, a plethoric IVC with minimal respiratory variation, and potentially exaggerated respiratory cycle changes in mitral and triscupid inflow velocities.
  • Of these, systolic right atrial collapse is the earliest echocardiographic sign of tamponadewith a sensitivity ranging from 50% to 100%.
  • Of the 4 standard echo views, systolic right atrial collapse can best be viewed in the apical 4-chamber and subxiphoid views.

Show References



Category: Critical Care

Title: Enterocolitis in the Critically-Ill Neutropenic Patient

Keywords: neutropenic fever, typhlitis, necrotizing enterocolitis, sepsis, septic shock (PubMed Search)

Posted: 2/12/2019 by Kami Windsor, MD (Updated: 3/28/2024)
Click here to contact Kami Windsor, MD

 

Neutropenic enterocolitis can occur in immunosuppressed patients, classically those being treated for malignancy (hematologic much more commonly than solid tumor). When involving the cecum specifically, it is known as "typhlitis."

It should be considered in any febrile neutropenic patients with abdominal pain or other symptoms of GI discomfort (diarrhea, vomiting, lower GI bleeding), and can be confirmed with CT imaging.

A recent study found that invasive fungal disease, most often candidemia, occurred in 20% of febrile neutropenic patients with CT-confirmed enteritis, a rate that increased to 30% if the patient was in septic shock.

 

Take Home: 

1. Have a lower threshold for abdominal CT imaging in your patients with febrile neutropenia and abdominal pain/GI symptoms, especially if they are critically ill.

2. Consider addition of IV antifungal therapy if they are hemodynamically unstable with enterocolitis on CT.

Show References



Management of Acute Variceal Bleeding

  • Patients with an acute UGIB secondary to esophageal or gastric varices frequently present in extremis.
  • The initial resuscitation of patients with a variceal bleed should focus on the administration of antibiotics, packed red blood cells (PRBC), vasoactive agents, and emergent endoscopy.
  • Antibiotics have been shown to reduce recurrent bleeding and mortality. A third-generation cephalosporin (e.g., ceftriaxone) is commonly recommended as the initial antibiotic of choice.
  • Utilize a restrictive PRBC transfusion strategy to target a Hb between 7 to 8 g/dL.
  • Vasoactive agents (e.g., octreotide) reduce portal pressure through splanchnic vasoconstriction and have been shown to reduce acute bleeding and the need for transfusion.

Show References



Category: Critical Care

Title: OHCA in Pregnancy

Keywords: OHCA, cardiac arrest, resuscitation, maternal cardiac arrest, pregnancy (PubMed Search)

Posted: 1/29/2019 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

Question

 

Historically, there has been very limited data regarding the epidemiology of OHCA in pregnant females. Two recently-published studies tried to shed some light on the issue.

Both Maurin et al.1 and Lipowicz et al.2 looked at all-cause out-of-hospital maternal cardiac arrest (MCA) data in terms of numbers and management, in Paris and Toronto respectively, from 2009/2010 to 2014. Collectively, they found: 

  • MCA was relatively rare: 0.8 MCA per 1000 OHCA (Maurin) and 1.71 MCA per 100,000 pregnant females (Lipowicz)
  • Low incidence of bystander CPR in witnessed MCA (33% and 0%)
  • Adherence to PMCS guidelines was poor 
  • Maternal survival was lower than what has been previously quoted for in-hospital CA: 12.5 and 16.7% compared to 40-50%3,4

A few reminders from the 2015 AHA guidelines for the management of cardiac arrest in pregnancy: 

  • Hand location for chest compressions should be in the center of the chest as for nonpregnant patients (previous recommendations had been to shift upward to accommodate for the gravid uterus but there is no data to support this).
  • Chest compressions should be performed with the patient supine, using manual lateral uterine displacement for aortocaval decompression. Left lateral tilt position is no longer recommended due to poorer quality of cardiac compressions, the lack of full aortocaval decompression, and further complication of other procedures such as airway management.
  • IV or IO access should be obtained above the diaphragm, to ensure no interference to flow to the heart by the gravid uterus.
  • Rate and depth of chest compressions, ACLS drugs and doses, and defibrillation all remain the same as in nonpregnant OHCA patients.
    • NB: As opposed to nonpregnant patients periarrest, oxygen saturation in the pregnant female should be maintained at 95% or greater, or PaO2 > 70mmHg, to ensure appropriate oxygen delivery to the fetus. The goal PCO2 is ~28-32 mmHg, to facilitate fetal CO2 removal.6  
  • If advanced airway is pursued, the most experienced provider should perform intubation due to the higher intrinsic difficulties, more rapid decompensation, and propensity for airway trauma and bleeding in the pregnant female.
  • Perimortem c-section should occur within the first 5 minutes of cardiac arrest / arrival to the ED in ongoing arrest. 

 

Bottom Line: Although maternal cardiac arrest is relatively rare, survival in OHCA is lower than perhaps previously thought. Areas to improve include public education on the importance of bystander CPR in pregnant females, and appropriate physician adherence to PMCS recommendations, with decreased on-scene time by EMS in order to decrease time to PMCS. 

 

 

Show Answer

Show References



Respiratory Complications of ICIs

  • Acute respiratory failure (ARF) is the leading cause of ICU admission for immunocompromised patients.
  • While infectious etiologies remain the most common cause of ARF in these patients, there is an increasing prevalence of non-infectious, treatment-related causes.
  • Immune check-point inhibitors (ICIs) are now used with increasing frequency, and can cause severe pulmonary toxicity in approximately 6% of patients.
  • Pearls for ICI pulmonary toxicity include:
    • Acute pneumonitis is the most common presentation
    • Median time of onset of approximately 4 months after treatment initiation
    • Symptoms include dry cough, hypoxemia, and infiltrates not c/w CHF, infection, or progression of malignancy
    • Treatment is to DC the ICI and initiate steroids

 

Show References



Category: Critical Care

Title: Late Awakening After Cardiac Arrest

Keywords: Cardiac arrest, neruo (PubMed Search)

Posted: 1/15/2019 by Daniel Haase, MD (Updated: 1/19/2019)
Click here to contact Daniel Haase, MD

--Late awakening (>48h after sedation held) was common (78/402) in patients with cardiac arrest in prospective cohort study

--Poor prognostic signs of discontinuous (10-49% suppression) EEG and absent brain stem reflexes were independently associated with late awakening. Use of midazolam also associated with late awakening

--Late awakeners had good functional outcome when compared to early awakeners

DON'T NEUROPROGNOSTIC EARLY (OR IN ED)!

And traditional poor prognostic signs may not be as poor as previously thought!

------------------

Rey A, Rossetti AO, Miroz JP, et al. Late Awakening in Survivors of Postanoxic Coma: Early Neurophysiologic Predictors and Association With ICU and Long-Term Neurologic Recovery. Critical Care MedicineJanuary 2019 - Volume 47 - Issue 1 - p 85–92

 

Show References



Category: Critical Care

Title: Renal Transplant Patients

Posted: 1/8/2019 by Mike Winters, MD (Updated: 3/28/2024)
Click here to contact Mike Winters, MD

Critically Ill Renal Transplant Patients

  • Renal transplant patients are at high risk of critical illness from a variety of etiologies.
  • Sepsis is the most common reason for critical illness and ICU admission.  
  • Due to their immunosuppression, renal transplant patients are at risk of a multitude of infections.
  • Notwithstanding, acute bacterial pyelonephritis of the transplant is the most frequent cuase of sepsis, followed by bacterial pneumonia.
  • Be sure to consider these two etiologies when faced with a critically ill, septic renal transplant patient.

Show References



Dyspnea in the Intubated Patient

  • Dyspnea may occur in up to 50% of intubated patients and has been associated with prolonged mechanical ventilation.
  • A number of assessment tools are available to detect dyspnea in the intubated patient.
  • Regardless of the tool used, once dyspnea is diagnosed, consider the following;
    • When possible, reduce nonrespiratory stimuli of the respiratory drive (i.e., fever, acidosis, anemia)
    • Minimize respiratory impedance (i.e., bronchodilators, thoracentesis for pleural effusion)
    • Optimize ventilator settings (i.e., change modes if applicable, increase inspiratory flow, increase PEEP)
    • Pharmacologic treatment (i.e., opioids, benzodiazepines)

Show References



Category: Critical Care

Title: Fluid Resuscitation in Shock

Keywords: circulatory dysfunction, hypotension, shock, fluid resuscitation, IV fluids (PubMed Search)

Posted: 1/1/2019 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

 

The European Society of Intensive Care Medicine (ESICM) recently released a review with recommendations from an expert panel for the use of IV fluids in the resuscitation of patients with acute circulatory dysfunction, especially in settings where invasive monitoring methods and ultrasound may not be available.

 

Points made by the panel include: 

  • Circulatory dysfunction should be identified not only by HR and BP, but by other indicators of poor perfusion: altered mentation, decreased urine output, and skin abnormalities (poor skin turgor, mottling, delayed capillary refill)
  • The absence of arterial hypotension does not preclude hypovolemia
  • The lack of an increase in MAP (especially in patients with decreased vascular tone) does not exclude positive response to IVF
  • The purpose of IVF administration is to improve tissue perfusion by increasing cardiac output
  • Fluid "loading" as the rapid administration of large volumes of fluid to treat overt hypovolemia, while a fluid "challenge" is a test of fluid responsiveness
  • In elderly patients or those with arteriosclerosis or chronic arterial hypertension, a low pulse pressure (e.g. less than 40 mmHg) indicates that stroke volume is low. PP = SBP - DBP

 

Recommendations from the panel include:

  • The early measurement of lactate to incorporate in the assessment of perfusion
  • The use of crystalloids as initial resuscitation fluid (unless blood products are indicated)
  • When overt hypovolemia is unclear, the use of a fluid challenge of 150-350mL IVF within 15 minutes to help assess fluid responsiveness
  • Avoidance of using jugular venous distension alone as a guide for resuscitation
  • Avoidance of using acute urine output response alone as a guide for resuscitation, as renal response to fluids can be delayed
  • A recommendation against using CVP as a target for resuscitation; if CVP is being measured, a rapid increase with IVF should suggest poor fluid tolerance
  • Individualizing fluid resuscitation to the patient's current presentation, underlying comorbidities, and response to fluids

 

Bottom Line: Utilize all the information you have about your patient to determine whether or not they require IVF, and reevaluate their physical and biochemical (lactate) response to fluids to ensure appropriate IVF administration and avoid volume overload. 

 

 

Show References



Noninvasive Ventilation in De-Novo Respiratory Failure

  • Noninvasive ventilation (NIV) is a primary therapy for patients with acute hypercapnic respiratory failure, especially those with an acute COPD exacerbation.
  • Notwithstanding its benefits in COPD and acute cardiogenic pulmonary edema, NIV should be used cautiously in patients with "de-novo" respiratory failure.
  • Many patients with de-novo respiratory failure will meet criteria for ARDS and have a high rate of intubation (30% - 60%).
  • The use of NIV with delayed intubation in this patient population has been associated with increased mortality. 

Show References



Category: Critical Care

Title: Avoid Hyperoxia...Period!

Keywords: hyperoxia, oxygen therapy, saturation, SpO2, critical care, mechanical ventilation (PubMed Search)

Posted: 12/4/2018 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

 

Hyperoxia has been repeatedly demonstrated to be detrimental in a variety of patients, including those with myocardial infarction, cardiac arrest, stroke, traumatic brain injury, and requiring mechanical ventilation,1-4 and the data that hyperoxia is harmful continues to mount:

  • Systematic review and meta-analysis of 16,000 patients admitted to hospital with sepsis, trauma, MI, stroke, emergency surgery, cardiac arrest: liberal oxygenation strategy (supplemental O2 for average SpO2 96%, range 94-100%) associated with increased in-hospital and 30-day mortality compared to conservative strategy.5
  • ED patients requiring mechanical ventilation admitted to ICU: hyperoxia defined as PaO@ >120mmHg. Patients with hyperoxia in the ED had higher mortality than not only normoxic but hypoxic patients (30% v 19% v 13% respectively), and longer vent days and ICU/hospital LOS.6
  • ICU patients, majority respiratory failure, 60% requiring mechanical ventilation; hyperoxia defined as PaO2 >100mmHg. Just ONE episode of hyperoxia an independent risk factor for ICU mortality (OR 3.80, 95% CI 1.08-16.01, p=0.047).7

 

Bottom LineAvoid hyperoxia in your ED patients, both relatively stable and critically ill. Remove or turn down supplemental O2 added by well-meaning pre-hospital providers and nurses, and wean down ventilator settings (often FiO2). A target SpO2 of >92% (>88% in COPD patients) or PaO2 >55-60 is reasonable in the majority of patients.8

Show References



 

A few (out of 10) tips for the care of sick patients with liver failure:

  • Use of albumin is indicated to improve outcomes in spontaneous bacterial peritonitis (SBP), large-volume paracentesis, and hepatorenal syndrome (HRS).
  • Norepinephrine remains the vasopressor of choice for nonhemorrhagic shock. Use vasopressin or terlipressin (outside the U.S.) in AKI due to HRS to maintain a target MAP and for splanchnic vasoconstriction.
  • INR does not correctly reflect coagulation performance. Platelet count and fibrinogen are the best predictors of bleeding, and thromboelastography (via TEG/ROTEM) can reduce blood products administered for hemorrhage without affecting mortality.
  • If a nasogastric tube is indicated (administration of lactulose, decompression of SBO, etcetera), presence of [non-recently banded] esophageal varices is not a contraindication.

 

Show References



Category: Critical Care

Title: Critically Ill Cancer Patient?

Posted: 11/13/2018 by Mike Winters, MD (Updated: 3/28/2024)
Click here to contact Mike Winters, MD

Identifying Critically Ill Cancer Patients in the ED

  • Immunosuppressed patients with malignancy are at high risk of complications and rapid decompensation.
  • Select pearls in identifying ED patients with cancer that are at high risk of critical illness include:
    • Patients with profound neutropenia (< 100/mm3) are at high risk for fungal infections (i.e., aspergillosis)
    • Hypoxemia that requires oxygen is a predictor of later ICU admission.
    • Patients with bilateral infiltrates on CXR are at high risk of decompensation. Consider ICU admission.
    • Patients with promyelocytic leukemias are at high risk of DIC. Patients with this complication should be admitted to the ICU.

Show References



Category: Critical Care

Title: Targeting Better Neurologic Outcomes by Targeting Higher MAPs Post-Cardiac Arrest

Keywords: resuscitation, cardiac arrest, post-cardiac arrest care, blood pressure, MAP, ROSC (PubMed Search)

Posted: 11/5/2018 by Kami Windsor, MD (Emailed: 11/6/2018) (Updated: 11/6/2018)
Click here to contact Kami Windsor, MD

The most recent AHA guidelines for goal blood pressure after return of spontaneous circulation (ROSC) post-cardiac arrest recommend a definite mean arterial pressure (MAP) goal of > 65 mmHg.1 There is no definitive data to recommend a higher specific goal, but there is some evidence to indicate that maintaining higher MAPs may be associated with better neurologic outcomes.2

A recently published prospective, observational, multicenter cohort study looked at neurologic outcomes corresponding to different MAPs maintained in the initial 6 hours post-cardiac arrest.3

Findings: 

1. Compared to lower blood pressures (MAPs 70-90 mmHg), the cohort with MAPs > 90 mmHg had:

  • a higher rate of good neurologic function at hospital discharge (42 vs.15%, p < 0.001)
  • a higher rate of survival to 72 hours (86 vs. 74%, p=0.01) and hospital discharge (57 vs 28%, p < 0.001)

2. The association between MAP > 90 mmHg and good neurologic outcome was stronger among patients with a previous diagnosis of hypertension, and persisted regardless of initial rhythm, use of vasopressors, or whether the cardiac arrest occured in or out of hospital.

3. There was a dose-response increase in probability of good neurologic outcome among all MAP ranges above 90 mmHg, with MAP >110 mmHg having the strongest association with good neurologic outcome at hospital discharge.

Note: The results of a separate trial, the Neuroprotect post-CA trial, comparing MAPs 85-100 mmHg to the currently recommended MAP goal of >65 mmHg, are pending.4

 

Bottom Line: As per current AHA guidelines, actively avoid hypotension, and consider use of vasopressor if needed to maintain MAPs > 90 mmHg in your comatose patients post-cardiac arrest, especially those with a preexisting diagnosis of hypertension.

 

Show References



Category: Critical Care

Title: High Velocity Nasal Insufflation

Keywords: High flow nasal cannula, acute respiratory failure, hypoxia, hypercarbia, non-invasive ventilation (PubMed Search)

Posted: 10/9/2018 by Kami Windsor, MD (Updated: 3/28/2024)
Click here to contact Kami Windsor, MD

We know that high flow nasal cannula is an option in the management of acute hypoxic respiratory failure without hypercapnea. A newer iteration of high flow, "high velocity nasal insufflation" (HVNI), may be up-and-coming.

According to its makers (Vapotherm), it is reported to work mainly by using smaller bore nasal cannulae that deliver the same flows at higher velocities, thereby more rapidly and repeatedly clearing dead space, facilitating gas exchange and potentially offering ventilatory support. 

In an industry-sponsored non-inferiority study published earlier this year:

  • 204 adult patients in 5 EDs
  • Any acute respiratory failure deemed by the treating physician to require non-invasive positive pressure ventilation (NPPV)
  • Patients randomized to either NPPV (bilevel positive airway pressure) or HVNI
  • Rate of HVNI treatment failure (26%) and intubation @ 72 hours (7%) fell within predefined noninferiority margins
  • Rates of PCO2 clearance were similar between HVNI and NPPV groups
  • The study was not powered to detect differences between different etiologies for respiratory failure
  • Authors concluded that HVNI is noninferior to NPPV for all-comer respiratory failure.

Bottom Line: 

The availability of a nasal cannula that helps with CO2 clearance would be great, and an option for patients who can't tolerate the face-mask of NPPV would be even better.

HVNI requires more investigation with better studies and external validation before it can really be considered noninferior to NPPV, but it certainly is interesting. 

 

Show References