Michael Grasso, MD, PhD, FACP

Academic Title:
Assistant Professor
Primary Clinical Site:
Baltimore VA Medical Center
Board Certifications:
American Board of Internal Medicine
On Faculty Since:
2009

Fellowships

University of Maryland School of Medicine --

Education and Training

Residency Training:
University of Maryland -- Internal Medicine

Medical School:
George Washington University

Academic Activities and Responsibilities

Michael Grasso is an Assistant Professor of Internal Medicine, Emergency Medicine, and Computer Science at the University of Maryland School of Medicine. He practices Emergency Medicine through the University of Maryland School of Medicine.  He is also board certified in Clinical Informatics and is Director of the Clinical Informatics Group at the University of Maryland School of Medicine.

He earned a medical degree from the George Washington University and a PhD in Computer Science from the University of Maryland Baltimore County. He completed residency training at the University of Maryland School of Medicine. He is a member of the Upsilon Pi Epsilon Honor Society in the Computing Sciences, the Kane-King-Dodec Medical Honor Society, the William Beaumont Medical Research Honor Society, and is a Fellow of the American College of Physicians.

Research Interests

He has been awarded more than $2,000,000 in grant and contract funding from the National Institutes of Health, the Food and Drug Administration, the National Institute of Standards and Technology, the National National Aeronautics and Space Administration, and the Department of Defense. He has authored more than 50 refereed publications, and has more than 20 years of experience in Clinical Informatics and Scientific Computing with an emphasis on software engineering, clinical decision support, and clinical data mining. His research focuses on big data analytics applied to clinical data. He is currently working with the national clinical repository from the Veterans Health Administration, which contains data on more than 35 million patients from roughly 150 medical centers and 800 outpatient clinics, and which he is augmenting with clinical data from other sources. He is developing new methods for knowledge representation and reasoning that are optimized for very large clinical repositories, and which can be applied to disease prediction, critical event prediction, and treatment efficacy prediction. He is also conducting research in resource utilization and recidivism in emergency medicine, with a focus on co-morbidities, key risk factors, adverse drug events, chronic pain, suicidality, addiction, utilization patterns, and clinical workflow.